Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Oral Dis ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501196

ABSTRACT

OBJECTIVES: To investigate the role of Keratinocyte Differentiation Factor 1 (KDF1) in ectodermal dysplasia (ED) and nonsyndromic tooth agenesis (NSTA) and perform a literature review. METHODS: Genome sequencing was used to identify genetic variants in a Thai, NSTA proband and validated through Sanger sequencing. Pathogenicity was assessed using ACMG guidelines, MetaRNN and AlphaMissense. A comprehensive review of KDF1/NSTA cases informed genotype-phenotype analysis of the proband. RESULTS: The proband revealed multiple missing teeth, caries and extensive periodontal disease. Deep phenotyping showed no signs of ED beyond tooth agenesis. The identified novel KDF1 variant, p.Ile243Leu, was classified as 'likely pathogenic' by ACMG and predicted as 'detrimental' by MetaRNN and AlphaMissense analyses. A total of 14 reviewed KDF1 cases revealed ED-associated variants (3 variants in 8 patients) clustering in the region of amino acids 251-275, within the DUF4656 domain, while NSTA-causing variants (4 variants in 6 patients) were typically found in amino- or carboxy-termini to this region. KDF1/NSTA cases exhibited an average of 15 missing teeth, with a higher prevalence in the mandible. CONCLUSION: This study identifies a novel KDF1 variant-related NSTA in Thai people. The genotype-phenotype correlates suggest a distinctive pattern and tooth agenesis of KDF1-related NSTA.

2.
Int Endod J ; 57(6): 745-758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477421

ABSTRACT

AIM: Loss-of-function mutations in FAM20A result in amelogenesis imperfecta IG (AI1G) or enamel-renal syndrome, characterized by hypoplastic enamel, ectopic calcification, and gingival hyperplasia, with some cases reporting spontaneous tooth infection. Despite previous reports on the consequence of FAM20A reduction in gingival fibroblasts and transcriptome analyses of AI1G pulp tissues, suggesting its involvement in mineralization and infection, its role in deciduous dental pulp cells (DDP) remains unreported. The aim of this study was to evaluate the properties of DDP obtained from an AI1G patient, providing additional insights into the effects of FAM20A on the mineralization of DDP. METHODOLOGY: DDP were obtained from a FAM20A-AI1G patient (mutant cells) and three healthy individuals. Cellular behaviours were examined using flow cytometry, MTT, attachment and spreading, colony formation, and wound healing assays. Osteogenic induction was applied to DDP, followed by alizarin red S staining to assess their osteogenic differentiation. The expression of FAM20A-related genes, osteogenic genes, and inflammatory genes was analysed using real-time PCR, Western blot, and/or immunolocalization. Additionally, STRING analysis was performed to predict potential protein-protein interaction networks. RESULTS: The mutant cells exhibited a significant reduction in FAM20A mRNA and protein levels, as well as proliferation, migration, attachment, and colony formation. However, normal FAM20A subcellular localization was maintained. Additionally, osteogenic/odontogenic genes, OSX, OPN, RUNX2, BSP, and DSPP, were downregulated, along with upregulated ALP. STRING analysis suggested a potential correlation between FAM20A and these osteogenic genes. After osteogenic induction, the mutant cells demonstrated reduced mineral deposition and dysregulated expression of osteogenic genes. Remarkably, FAM20A, FAM20C, RUNX2, OPN, and OSX were significantly upregulated in the mutant cells, whilst ALP, and OCN was downregulated. Furthermore, the mutant cells exhibited a significant increase in inflammatory gene expression, that is, IL-1ß and TGF-ß1, whereas IL-6 and NFκB1 expression was significantly reduced. CONCLUSION: The reduction of FAM20A in mutant DDP is associated with various cellular deficiencies, including delayed proliferation, attachment, spreading, and migration as well as altered osteogenic and inflammatory responses. These findings provide novel insights into the biology of FAM20A in dental pulp cells and shed light on the molecular mechanisms underlying AI1G pathology.


Subject(s)
Amelogenesis Imperfecta , Cell Differentiation , Dental Enamel Proteins , Dental Pulp , Nephrocalcinosis , Osteogenesis , Tooth, Deciduous , Humans , Cells, Cultured , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Dental Pulp/cytology , Dental Pulp/metabolism , Gene Expression , Mutation , Osteogenesis/genetics
4.
Clin Implant Dent Relat Res ; 26(2): 402-414, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38317374

ABSTRACT

AIMS: The aim of this randomized controlled clinical trial was to compare the gene expression, micro-CT, histomorphometrical analysis between biphasic calcium phosphate (BCP) of 70/30 ratio and deproteinized bovine bone mineral (DBBM) in sinus augmentation. MATERIALS AND METHODS: Twenty-four patients in need for sinus floor augmentation through lateral approach were randomized into BCP 70/30 ratio or DBBM. After at least 6 months of healing, a total of 24 bone specimens were collected from the entire height of the augmented bone at the area of implant placement and underwent micro-CT, histomorphometric and gene expression analysis. The 12 bone specimens of BCP 70/30 ratio were equally allocated to micro-CT and histologic analysis (test group, n = 6) and gene expression analysis (test group, n = 6). Similarly, the 12 bone specimens of DBBM were also allocated to micro-CT and histologic analysis (control group, n = 6) and gene expression analysis (control group, n = 6). The newly formed bone, remaining graft materials and relative change in gene expression of four target genes were assessed. RESULTS: The micro-CT results showed no statistically significant difference in the ratio of bone volume to total volume (BV/TV ratio) for the two groups (BCP 41.51% vs. DBBM 40.97%) and the same was true for residual graft material to total volume (GV/TV ratio, BCP 9.97% vs. DBBM 14.41%). Similarly, no significant difference was shown in the histological analysis in terms of bone formation, (BCP 31.43% vs. DBBM was 30.09%) and residual graft area (DBBM 40.76% vs. BCP 45.06%). With regards to gene expression, the level of ALP was lower in both groups of bone grafted specimens compared with the native bone. On the contrary, the level of OSX, IL-1B and TRAP was higher in augmented bone of both groups compared with the native bone. However, the relative difference in all gene expressions between BCP and DBBM group was not significant. CONCLUSIONS: The BCP, HA/ß-TCP ratio of 70/30 presented similar histological and micro-CT outcomes in terms of new bone formation and residual graft particles with DBBM. The gene expression analysis revealed different gene expression patterns between augmented and native bone, but showed no significant difference between the two biomaterials.


Subject(s)
Bone Substitutes , Hydroxyapatites , Sinus Floor Augmentation , Humans , Animals , Cattle , Sinus Floor Augmentation/methods , X-Ray Microtomography , Bone Substitutes/therapeutic use , Minerals , Gene Expression , Maxillary Sinus , Bone Transplantation/methods , Biological Products
5.
J Transl Med ; 22(1): 111, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38282030

ABSTRACT

The study of microbial communities has undergone significant advancements, starting from the initial use of 16S rRNA sequencing to the adoption of shotgun metagenomics. However, a new era has emerged with the advent of long-read sequencing (LRS), which offers substantial improvements over its predecessor, short-read sequencing (SRS). LRS produces reads that are several kilobases long, enabling researchers to obtain more complete and contiguous genomic information, characterize structural variations, and study epigenetic modifications. The current leaders in LRS technologies are Pacific Biotechnologies (PacBio) and Oxford Nanopore Technologies (ONT), each offering a distinct set of advantages. This review covers the workflow of long-read metagenomics sequencing, including sample preparation (sample collection, sample extraction, and library preparation), sequencing, processing (quality control, assembly, and binning), and analysis (taxonomic annotation and functional annotation). Each section provides a concise outline of the key concept of the methodology, presenting the original concept as well as how it is challenged or modified in the context of LRS. Additionally, the section introduces a range of tools that are compatible with LRS and can be utilized to execute the LRS process. This review aims to present the workflow of metagenomics, highlight the transformative impact of LRS, and provide researchers with a selection of tools suitable for this task.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , RNA, Ribosomal, 16S/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Sequence Analysis, DNA/methods , Genomics
6.
Sci Rep ; 14(1): 2330, 2024 01 28.
Article in English | MEDLINE | ID: mdl-38282012

ABSTRACT

The field of dysmorphology has been changed by the use Artificial Intelligence (AI) and the development of Next Generation Phenotyping (NGP). The aim of this study was to propose a new NGP model for predicting KS (Kabuki Syndrome) on 2D facial photographs and distinguish KS1 (KS type 1, KMT2D-related) from KS2 (KS type 2, KDM6A-related). We included retrospectively and prospectively, from 1998 to 2023, all frontal and lateral pictures of patients with a molecular confirmation of KS. After automatic preprocessing, we extracted geometric and textural features. After incorporation of age, gender, and ethnicity, we used XGboost (eXtreme Gradient Boosting), a supervised machine learning classifier. The model was tested on an independent validation set. Finally, we compared the performances of our model with DeepGestalt (Face2Gene). The study included 1448 frontal and lateral facial photographs from 6 centers, corresponding to 634 patients (527 controls, 107 KS); 82 (78%) of KS patients had a variation in the KMT2D gene (KS1) and 23 (22%) in the KDM6A gene (KS2). We were able to distinguish KS from controls in the independent validation group with an accuracy of 95.8% (78.9-99.9%, p < 0.001) and distinguish KS1 from KS2 with an empirical Area Under the Curve (AUC) of 0.805 (0.729-0.880, p < 0.001). We report an automatic detection model for KS with high performances (AUC 0.993 and accuracy 95.8%). We were able to distinguish patients with KS1 from KS2, with an AUC of 0.805. These results outperform the current commercial AI-based solutions and expert clinicians.


Subject(s)
Abnormalities, Multiple , Artificial Intelligence , Face/abnormalities , Hematologic Diseases , Vestibular Diseases , Humans , Mutation , Retrospective Studies , Hematologic Diseases/diagnosis , Hematologic Diseases/genetics , Phenotype , Histone Demethylases/genetics , Genotype
7.
Oral Dis ; 30(2): 537-550, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36650945

ABSTRACT

OBJECTIVES: To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS: Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS: All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS: We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.


Subject(s)
Amelogenesis Imperfecta , Dental Enamel Proteins , Humans , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Mutation , Dental Enamel Proteins/genetics , Phosphorus , Minerals , Carbon
8.
Int J Paediatr Dent ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062862

ABSTRACT

BACKGROUND: Various orodental problems affect patients with inborn errors of immunity (IEI), but there are limited studies on these issues. AIM: To study orodental status and its confounding factors in patients with IEI. DESIGN: Caries, enamel defects, gingival, and soft tissue conditions were examined. Data on patient characteristics, dental hygiene habits, dental attendance, and household income were collected. Statistical analysis and logistic regression were performed. RESULTS: Forty-five participants with a mean age of 9.20 ± 6.41 years were included. Almost all participants had gingivitis (42 of 45; 93.3%), whereas a small number had periodontitis (five of 45; 11.1%). Calculus was found in 33 (73.3%) and caries in 30 (66.7%). Mucosal ulcers, enamel defects, and candidiasis were observed in 23 of 45 (51.1%), 16 of 43 (37.2%), and six of 43 (14.0%), respectively. Chances of having caries, moderate-to-severe gingivitis, periodontitis, calculus, and ulcers increased with age. Taking antibiotics in the last two months increased the risk of caries by five times. Lower income increased the risk of calculus deposit by nine times. CONCLUSION: Gingivitis, calculus, caries, and mucosal ulcers were the most common orodental findings in patients with IEI. Antibiotics increased the risk of caries, and low-income children had higher calculus accumulation.

11.
Front Pediatr ; 11: 1171277, 2023.
Article in English | MEDLINE | ID: mdl-37664547

ABSTRACT

Introduction: Mandibulo-Facial Dysostosis with Microcephaly (MFDM) is a rare disease with a broad spectrum of symptoms, characterized by zygomatic and mandibular hypoplasia, microcephaly, and ear abnormalities. Here, we aimed at describing the external ear phenotype of MFDM patients, and train an Artificial Intelligence (AI)-based model to differentiate MFDM ears from non-syndromic control ears (binary classification), and from ears of the main differential diagnoses of this condition (multi-class classification): Treacher Collins (TC), Nager (NAFD) and CHARGE syndromes. Methods: The training set contained 1,592 ear photographs, corresponding to 550 patients. We extracted 48 patients completely independent of the training set, with only one photograph per ear per patient. After a CNN-(Convolutional Neural Network) based ear detection, the images were automatically landmarked. Generalized Procrustes Analysis was then performed, along with a dimension reduction using PCA (Principal Component Analysis). The principal components were used as inputs in an eXtreme Gradient Boosting (XGBoost) model, optimized using a 5-fold cross-validation. Finally, the model was tested on an independent validation set. Results: We trained the model on 1,592 ear photographs, corresponding to 1,296 control ears, 105 MFDM, 33 NAFD, 70 TC and 88 CHARGE syndrome ears. The model detected MFDM with an accuracy of 0.969 [0.838-0.999] (p < 0.001) and an AUC (Area Under the Curve) of 0.975 within controls (binary classification). Balanced accuracies were 0.811 [0.648-0.920] (p = 0.002) in a first multiclass design (MFDM vs. controls and differential diagnoses) and 0.813 [0.544-0.960] (p = 0.003) in a second multiclass design (MFDM vs. differential diagnoses). Conclusion: This is the first AI-based syndrome detection model in dysmorphology based on the external ear, opening promising clinical applications both for local care and referral, and for expert centers.

12.
Clin Oral Investig ; 27(10): 5827-5839, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37548766

ABSTRACT

OBJECTIVE: Skeletal dysplasia (SD) comprises more than 450 separate disorders. We hypothesized that their dental features would be distinctive and investigated the tooth characteristics of four patients with different SDs. MATERIAL AND METHODS: Four SD patients with molecularly confirmed diagnoses, Pt-1 acromicric dysplasia, Pt-2 hypophosphatasia and hypochondroplasia, Pt-3 cleidocranial dysplasia, and Pt-4 achondroplasia, were recruited. A tooth from each patient was evaluated for mineral density (micro-computerized tomography), surface roughness (surface profilometer), microhardness, mineral contents (energy-dispersive X-ray), and ultrastructure (scanning electron microscopy and histology), and compared with three tooth-type matched controls. RESULTS: Pt-1 and Pt-3 had several unerupted teeth. Pt-2 had an intact-root-exfoliated tooth at 2 years old. The lingual surfaces of the patients' teeth were significantly smoother, while their buccal surfaces were rougher, than controls, except for Pt-1's buccal surface. The patients' teeth exhibited deep grooves around the enamel prisms and rough intertubular dentin. Pt-3 demonstrated a flat dentinoenamel junction and Pt-2 had an enlarged pulp, barely detectable cementum layer, and ill-defined cemento-dentinal junction. Reduced microhardnesses in enamel, dentin, and both layers were observed in Pt-3, Pt-4, and Pt-1, respectively. Pt-1 showed reduced Ca/P ratio in dentin, while both enamel and dentin of Pt-2 and Pt-3 showed reduced Ca/P ratio. CONCLUSION: Each SD has distinctive dental characteristics with changes in surface roughness, ultrastructure, and mineral composition of dental hard tissues. CLINICAL RELEVANCE: In this era of precision dentistry, identifying the specific potential dental problems for each patient with SD would help personalize dental management guidelines.

13.
Sci Rep ; 13(1): 12202, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500953

ABSTRACT

Cleidocranial dysplasia (CCD) is a genetic disorder caused by mutations in the RUNX2 gene, affecting bone and teeth development. Previous studies focused on mutations in the RUNX2 RHD domain, with limited investigation of mutations in the C-terminal domain. This study aimed to investigate the functional consequences of C-terminal mutations in RUNX2. Eight mutations were analyzed, and their effects on transactivation activity, protein expression, subcellular localization, and osteogenic potential were studied. Truncating mutations in the PST region and a missense mutation in the NMTS region resulted in increased transactivation activity, while missense mutations in the PST showed activity comparable to the control. Truncating mutations produced truncated proteins, while missense mutations produced normal-sized proteins. Mutant proteins were mislocalized, with six mutant proteins detected in both the nucleus and cytoplasm. CCD patient bone cells exhibited mislocalization of RUNX2, similar to the generated mutant. Mislocalization of RUNX2 and reduced expression of downstream genes were observed in MSCs from a CCD patient with the p.Ser247Valfs*3 mutation, leading to compromised osteogenic potential. This study provides insight into the functional consequences of C-terminal mutations in RUNX2, including reduced expression, mislocalization, and aberrant transactivation of downstream genes, contributing to the compromised osteogenic potential observed in CCD.


Subject(s)
Cleidocranial Dysplasia , Core Binding Factor Alpha 1 Subunit , Humans , Core Binding Factor Alpha 1 Subunit/genetics , Mutation , Mutation, Missense , Cleidocranial Dysplasia/genetics
14.
Jpn Dent Sci Rev ; 59: 129-137, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37159578

ABSTRACT

Mutations in PAX9 are the most common genetic cause of tooth agenesis (TA). The aim of this study was to systematically review the profiles of the TA and PAX9 variants and establish their genotype-phenotype correlation. Forty articles were eligible for 178 patients and 61 mutations (26 in frame and 32 null mutations). PAX9 mutations predominantly affected molars, mostly the second molar, and the mandibular first premolar was the least affected. More missing teeth were found in the maxilla than the mandible, and with null mutations than in-frame mutations. The number of missing teeth was correlated with the locations of the in-frame mutations with the C-terminus mutations demonstrating the fewest missing teeth. The null mutation location did not influence the number of missing teeth. Null mutations in all locations predominantly affected molars. For the in-frame mutations, a missing second molar was commonly associated with mutations in the highly conserved paired DNA-binding domain, particularly the linking peptide (100% prevalence). In contrast, C-terminus mutations were rarely associated with missing second molars and anterior teeth, but were commonly related to an absent second premolar. These finding indicate that the mutation type and position contribute to different degrees of loss of PAX9 function that further differentially influences the manifestations of TA. This study provides novel information on the correlation of the PAX9 genotype-phenotype, aiding in the genetic counseling for TA.

15.
BDJ Open ; 9(1): 15, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041139

ABSTRACT

OBJECTIVES: To characterize phenotype and genotype of amelogenesis imperfecta (AI) in a Thai patient, and review of literature. MATERIALS AND METHODS: Variants were identified using trio-exome and Sanger sequencing. The ITGB6 protein level in patient's gingival cells was measured. The patient's deciduous first molar was investigated for surface roughness, mineral density, microhardness, mineral composition, and ultrastructure. RESULTS: The patient exhibited hypoplastic-hypomineralized AI, taurodontism, and periodontal inflammation. Exome sequencing identified the novel compound heterozygous ITGB6 mutation, a nonsense c.625 G > T, p.(Gly209*) inherited from mother and a splicing c.1661-3 C > G from father, indicating AI type IH. The ITGB6 level in patient cells was significantly reduced, compared with controls. Analyses of a patient's tooth showed a significant increase in roughness while mineral density of enamel and microhardness of enamel and dentin were significantly reduced. In dentin, carbon was significantly decreased while calcium, phosphorus, and oxygen levels were significantly increased. Severely collapsed enamel rods and a gap in dentinoenamel junction were observed. Of six affected families and eight ITGB6 variants that have been reported, our patient was the only one with taurodontism. CONCLUSION: We report the hypoplasia/hypomineralization/taurodontism AI patient with disturbed tooth characteristics associated with the novel ITGB6 variants and reduced ITGB6 expression, expanding genotype, phenotype, and understanding of autosomal recessive AI.

16.
BMC Oral Health ; 23(1): 37, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36691053

ABSTRACT

BACKGROUND: Sex dimorphism has been implicated in oral health differences and the pathogenesis of oral diseases, such as tooth agenesis, periodontal disease, dental caries, and tooth loss. Tooth agenesis (TA) is one of the most common developmental anomalies in humans, and its prevalence and patterns are different across ethnic groups. The aim of this study was to investigate the phenotypes and sex-associated patterns of nonsyndromic tooth agenesis (TA) in Thai dental patients. METHODS: One thousand ninety panoramic radiographs were examined. One hundred and one subjects (37 males, 64 females, 15-20 years-old) with nonsyndromic TA were evaluated. Differences in TA prevalence between groups were analyzed using the chi-square or Fisher exact test. RESULTS: The TA prevalence, excluding third molars, was 9.3% and more frequently found in the mandible compared with the maxilla. The maxilla demonstrated a higher prevalence of first premolar agenesis than the mandible (P = 0.012), while the mandible had a higher prevalence of second premolar agenesis than the maxilla (P = 0.031). There were significantly more males missing one tooth than females, however, there were more females missing two or more teeth than males (P = 0.042). A missing maxillary left lateral incisor was significantly more frequent in males (P = 0.019), while a missing mandibular right lateral incisor was more frequent in females (P = 0.025). In females, the pattern of two mandibular lateral incisors agenesis was the most common and significantly present in females more than males (P = 0.015). In contrast, the pattern of one mandibular left lateral incisor agenesis was only observed in males and significantly found in males more than females (P = 0.047). CONCLUSIONS: We demonstrate sex-associated differences in nonsyndromic tooth agenesis. The prevalence of single tooth agenesis was higher in males, while that of two or more teeth agenesis was higher in females. We found different patterns of lateral incisor agenesis between males and females.


Subject(s)
Anodontia , Dental Caries , Tooth Abnormalities , Adolescent , Adult , Female , Humans , Male , Young Adult , Anodontia/epidemiology , Dental Caries/pathology , Dentition, Permanent , Maxilla/pathology , Prevalence , Sex Characteristics , Tooth Abnormalities/epidemiology , Malocclusion
17.
J Allergy Clin Immunol ; 151(2): 565-571.e9, 2023 02.
Article in English | MEDLINE | ID: mdl-36216080

ABSTRACT

BACKGROUND: The signal transducer and activator of transcription 6 (STAT6) signaling pathway plays a central role in allergic inflammation. To date, however, there have been no descriptions of STAT6 gain-of-function variants leading to allergies in humans. OBJECTIVE: We report a STAT6 gain-of-function variant associated with early-onset multiorgan allergies in a family with 3 affected members. METHODS: Exome sequencing and immunophenotyping of T-helper cell subsets were conducted. The function of the STAT6 protein was analyzed by Western blot, immunofluorescence, electrophoretic mobility shift assays, and luciferase assays. Gastric organoids obtained from the index patient were used to study downstream effector cytokines. RESULTS: We identified a heterozygous missense variant (c.1129G>A;p.Glu377Lys) in the DNA binding domain of STAT6 that was de novo in the index patient's father and was inherited by 2 of his 3 children. Severe atopic dermatitis and food allergy were key presentations. Clinical heterogeneity was observed among the affected individuals. Higher levels of peripheral blood TH2 lymphocytes were detected. The mutant STAT6 displayed a strong preference for nuclear localization, increased DNA binding affinity, and spontaneous transcriptional activity. Moreover, gastric organoids showed constitutive activation of STAT6 downstream signaling molecules. CONCLUSIONS: A germline STAT6 gain-of-function variant results in spontaneous activation of the STAT6 signaling pathway and is associated with an early-onset and severe allergic phenotype in humans. These observations enhance our knowledge of the molecular mechanisms underlying allergic diseases and will potentially contribute to novel therapeutic interventions.


Subject(s)
Food Hypersensitivity , Gain of Function Mutation , Child , Humans , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Cytokines/metabolism , DNA
18.
Clin Genet ; 103(2): 256-257, 2023 02.
Article in English | MEDLINE | ID: mdl-36354001

ABSTRACT

The study identifies a non-consanguineous multigenerational family of the Lua ethnic group in Northern Thailand with three members affected with hypoplastic-hypocalcified amelogenesis imperfecta, cone-rod dystrophy, and harboring a novel homozygous missense variant, c.1475G>A p.(Gly492Asp), in CNNM4, indicating Jalili syndrome. We report features including advanced dental age, crossbite, developmental delay, expanding genotypic and phenotypic spectra of Jalili syndrome, and perform the prenatal genetic testing that helps avoid unnecessary pregnancy termination.


Subject(s)
Amelogenesis Imperfecta , Cation Transport Proteins , Cone-Rod Dystrophies , Retinitis Pigmentosa , Humans , Cone-Rod Dystrophies/genetics , Amelogenesis Imperfecta/diagnosis , Amelogenesis Imperfecta/genetics , Retinitis Pigmentosa/genetics , Cation Transport Proteins/genetics
19.
Oral Dis ; 29(2): 735-746, 2023 Mar.
Article in English | MEDLINE | ID: mdl-34558757

ABSTRACT

OBJECTIVE: To investigate the role of phosphatase and tensin homolog (PTEN) in dental pulp cells (hDPs) and adipose-derived mesenchymal stem cells (hADSCs). MATERIALS AND METHODS: Genetic variant was identified with exome sequencing. The hDPs isolated from a patient with Cowden syndrome were investigated for their proliferation, osteogenesis, adipogenesis, and gene expression compared with controls. The normal hDPs and hADSCs were treated with the PTEN inhibitor, VO-OHpic trihydrate (VOT), to investigate the effect of PTEN inhibition. RESULTS: A heterozygous nonsense PTEN variant, c.289C>T (p.Gln97*), was identified in the Cowden patient's blood and intraoral lipomas. The mutated hDPs showed significantly decreased proliferation, but significantly upregulated RUNX2 and OSX expression and mineralization, indicating enhanced osteogenic ability in mutated cells. The normal hDPs treated with VOT showed the decreases in proliferation, colony formation, osteogenic marker genes, alkaline phosphatase activity, and mineral deposition, suggesting that PTEN inhibition diminishes proliferation and osteogenic potential of hDPs. Regarding adipogenesis, the VOT-treated hADSCs showed a reduced number of cells containing lipid droplets, suggesting that PTEN inhibition might compromise adipogenic ability of hADSCs. CONCLUSIONS: PTEN regulates proliferation, enhances osteogenesis of hDPs, and induces adipogenesis of hADSCs. The gain-of-function PTEN variant, p.Gln97*, enhances osteogenic ability of PTEN in hDPs.


Subject(s)
Adipogenesis , Mesenchymal Stem Cells , Humans , Adipogenesis/genetics , Cell Differentiation/genetics , Adipose Tissue , Osteogenesis/genetics , Dental Pulp , Mesenchymal Stem Cells/metabolism , Cell Proliferation/genetics , Cells, Cultured , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/pharmacology
20.
J Clin Endocrinol Metab ; 108(1): 52-58, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36149814

ABSTRACT

CONTEXT: Biallelic pathogenic variants in the NEUROG3 gene cause malabsorptive diarrhea, insulin-dependent diabetes mellitus (IDDM), and rarely hypogonadotropic hypogonadism. With only 17 reported cases, the clinical and mutational spectra of this disease are far from complete. OBJECTIVE: To identify the underlying genetic etiology in 3 unrelated Thai patients who presented with early-onset malabsorptive diarrhea, endocrine abnormalities, and renal defects and to determine the pathogenicity of the newly identified pathogenic variants using luciferase reporter assays and western blot. METHODS: Three unrelated patients with congenital diarrhea were recruited. Detailed clinical and endocrinological features were obtained. Exome sequencing was performed to identify mutations and in vitro functional experiments including luciferase reporter assay were studied to validate their pathogenicity. RESULTS: In addition to malabsorptive diarrhea due to enteric anendocrinosis, IDDM, short stature, and delayed puberty, our patients also exhibited pituitary gland hypoplasia with multiple pituitary hormone deficiencies (Patient 1, 2, 3) and proximal renal tubulopathy (Patient 2, 3) that have not previously reported. Exome sequencing revealed that Patient 1 was homozygous for c.371C > G (p.Thr124Arg) while the other 2 patients were homozygous for c.284G > C (p.Arg95Pro) in NEUROG3. Both variants have never been previously reported. Luciferase reporter assay demonstrated that these 2 variants impaired transcriptional activity of NEUROG3. CONCLUSIONS: This study reported pituitary gland hypoplasia with multiple pituitary hormone deficiencies and proximal renal tubulopathy and 2 newly identified NEUROG3 loss-of-function variants in the patients with NEUROG3-associated syndrome.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Diabetes Mellitus, Type 1 , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Nerve Tissue Proteins/genetics , Mutation , Diarrhea/genetics , Diarrhea/congenital , Phenotype , Pituitary Hormones
SELECTION OF CITATIONS
SEARCH DETAIL
...